Extended Abstract

Motivation Reinforcement learning fine-tuning (RLFT) is widely used to adapt pretrained policies
to specific downstream tasks using simple reward signals. However, a known failure mode in RLFT is
entropy collapse, where the policy becomes increasingly deterministic and forgets valuable behaviors
learned during pretraining. To counteract this, many algorithms introduce an entropy bonus, intended
to promote continued exploration. Yet the precise role of this bonus in maintaining policy diversity
and supporting effective learning remains poorly understood. Our work critically examines whether
the entropy bonus truly encourages exploration, or merely injects randomness without improving
performance.

Method We conduct a systematic investigation of entropy regularization by fine-tuning behaviorally
cloned policies across four Atari environments—Gravitar, Breakout, Berzerk, and Private Eye. We
vary the entropy coefficient (co € {0.0,0.05,0.5,0.9}) while holding other hyperparameters fixed,
allowing us to isolate the effects of entropy bonuses during fine-tuning. Our analysis combines
empirical evaluation (rewards, success rates, entropy trends, KL. divergence, critic loss) with theo-
retical analysis showing how entropy bonuses introduce competing gradients that trade off between
maximizing reward and distributing probability mass uniformly.

Implementation We begin by training a PPO agent from scratch to generate expert rollouts.
These are used to train a behaviorally cloned policy, which serves as the initialization for all RLFT
experiments. The cloned policy is fine-tuned for 1M PPO steps under each entropy setting. For each
configuration, we log metrics such as entropy over time, critic loss, and changes in action distributions.
Our implementation follows standard PPO practices and uses a convolutional architecture consistent
with prior work on Atari.

Results Our experiments reveal that entropy bonuses significantly impact policy fine-tuning dy-
namics. Without entropy regularization, policies rapidly collapse to deterministic behaviors, sharply
reducing entropy and failing to explore. Moderate bonuses delay this collapse and improve critic
convergence, evidenced by lower critic loss across environments. However, high entropy coefficients
often lead to premature unlearning of expert behaviors and sustained underperformance—especially
in complex games like Berzerk and Private Eye. Crucially, increased entropy does not induce quali-
tatively new behaviors; it merely broadens existing action modes rather than discovering new ones.
Action distribution analyses confirm that entropy widens policy variance without shifting modal
preferences. KL divergence trends also show that higher entropy accelerates divergence from the
pretrained policy, but not toward more successful behavior. Finally, critic learning benefits most from
moderate entropy: losses stabilize and better approximate state values, particularly in exploratory
regions of the state space.

Discussion These findings complicate the standard view that entropy bonuses robustly enhance
exploration. Instead, entropy often causes destructive unlearning early in RLFT, especially when
coefficients are high. While entropy improves critic learning by encouraging broader data collection,
its exploratory value saturates quickly. All policies, regardless of coefficient, converge to a similar
entropy ceiling—suggesting diminishing returns from increasing cs. Moreover, entropy mostly adds
variance around existing modes rather than prompting discovery of new ones. This trade-off—between
exploration and preservation of pretrained behavior—proves difficult to manage without adaptive
tuning. Our analysis also reveals that RLFT reinforces pretrained action biases: even when better
alternatives exist, fine-tuned policies may favor suboptimal expert actions due to prior bias.

Conclusion Entropy regularization stabilizes value learning and delays policy collapse, but it is
insufficient for inducing meaningful exploration or preserving pretraining benefits. Larger coefficients
often undermine performance by accelerating unlearning and flattening useful action distributions.
Despite improved critic loss and temporarily higher entropy, agents fail to discover novel strategies.
Overall, entropy acts more as a noise injection mechanism than a true driver of exploration. Effective
RLFT in complex environments likely requires more targeted techniques—such as adaptive entropy
decay or explicit diversity rewards—that go beyond static entropy bonuses.
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Abstract

Reinforcement learning fine-tuning (RLFT) often leads to entropy collapse, where
the policy prematurely narrows its behavior and loses generalization. This project
investigates how varying entropy regularization affects exploration and critic sta-
bility during RLFT in PPO-based agents. We pretrain agents via behavior cloning
and fine-tune them with different entropy coefficients across four Atari games of
varying exploration difficulty. Our results show that moderate entropy improves
critic loss convergence and maintains policy diversity, while high entropy degrades
performance and erodes useful pretraining signals. Action diversity gains saturate
quickly, and fine-tuned policies tend to reweight pretrained behaviors rather than
discover new ones. We conclude that entropy helps delay collapse but does not
solve the broader exploration challenge in RLFT.

1 Introduction

Online reinforcement learning (RL)(Sutton and Bartol 2018) has demonstrated significant promise in
enabling agents to acquire complex behaviors through sequential decision-making and continuous
interaction with their environments. RL methods have achieved remarkable success in diverse
domains, including game playing(Silver et al.,[2017), robotics (Luo et al., 2025), and natural language
processing (DeepSeek-Al et al.| [2025; Yang et al.| 2025 [Lambert et al., 20255 |OpenAl et al.| [2024).
More recently, large-scale deep RL has advanced the frontier of large language models (LLMs),
particularly in verifiable domains such as mathematical reasoning and programming, enabling LLMs
to tackle complex logical tasks.

In these settings, RL typically begins with a pretrained model that is optionally fine-tuned on
high-quality data—for example, long chains of thought (CoT) for reasoning—before being further
optimized using reinforcement learning on simple, automatically computable rewards. These rewards
are often based on whether the model’s output matches a ground-truth solution in mathematics or
passes unit tests in code, facilitating scalable optimization without human labeling. This framework
has garnered significant attention due to its simplicity and practical effectiveness.

However, it remains unclear whether reinforcement learning fine-tuning (RLFT) enables models to
discover novel behaviors beyond those acquired during pre-training or supervised fine-tuning. Recent
work suggests that RLFT may primarily sharpen the policy distribution around already successful
behaviors present in the pretrained model (Yue et al.,|2025;|Cui et al.| |2025). This phenomenon, often
termed "entropy collapse," may cause models to abandon alternative beneficial behaviors and focus
narrowly on the most successful one. As a result, policies become less stochastic and less exploratory,
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potentially limiting progress when encountering unfamiliar or challenging problems. The ability to
explore and generate diverse solution strategies is especially crucial in these settings: a model that
collapses onto a single behavior may fail when that behavior is invalid at test time or when users
require different approaches. Retaining a repertoire of learned behaviors is therefore essential for
robustness and adaptability.

A popular approach to mitigating entropy collapse is the addition of an entropy bonus (Cui et al., 2025;
Schulman et al.| 2017b)), which augments the RL objective to simultaneously maximize expected
rewards and the expected entropy of the policy. In principle, maximum entropy RL encourages
exploration by promoting more stochastic policies. However, in practice, large-scale RLFT often
omits the entropy bonus due to various practical considerations.

In this paper, we investigate the mechanisms and effects of the entropy bonus in RLFT. Specifically,
we address the following questions:

1. Does the entropy bonus enable the model to retain successful behavioral modes that would
otherwise be forgotten during RLFT? In particular, does it genuinely promote exploration
of alternative action modes, or does it simply increase variance around the modes already
favored by RLFT?

2. How does the entropy bonus affect critic learning and, by extension, the quality of the
extracted policy?

Our findings indicate that incorporating an entropy bonus in PPO does not lead to the discovery of
fundamentally new behaviors, and can instead accelerate the unlearning of expert behaviors acquired
during pre-training. On the other hand, we observe that the entropy bonus can stabilize critic learning
and lead to more accurate value estimates.

2 Related Work

Policy Gradient Methods. Reinforcement learning algorithms based on policy gradients directly
optimize the policy parameters by following an estimate of the gradient of expected return. Early
methods like REINFORCE (Sutton and Bartol |2018)) suffered from high variance, which spurred
development of variance-reduction techniques (e.g., baseline subtraction (Williams| |1992); advantage
estimation (Schulman et al.,|2018))). Actor-critic architectures combine policy gradient actors with
value function critics to stabilize learning (?). Notably, the Asynchronous Advantage Actor-Critic
(A3C) algorithm (Mnih et al., 2016) demonstrated that parallel actor learners can effectively train deep
policies across many Atari games. Trust-region methods introduced theoretical guarantees for stable
policy updates: Trust Region Policy Optimization (TRPO) (Schulman et al.|2017a) enforced a small
KL-divergence between old and new policies to ensure monotonic improvement. Proximal Policy
Optimization (PPO) (Schulman et al.l 2017b) later simplified TRPO by using a clipped surrogate
objective, becoming a popular on-policy method due to its ease of implementation and strong
empirical performance. PPO has been widely used as a baseline for fine-tuning large pre-trained
policies, thanks to its robustness against unstable gradient updates. On the other hand, off-policy
policy gradient algorithms have also been explored. Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2019) extended actor-critic methods to continuous action spaces by combining a
deterministic policy with an off-policy Q-learning update. A significant advance in this category is
Soft Actor-Critic (SAC) (Haarnoja et al.l [2018), which maximizes a maximum entropy objective:
the agent aims to maximize expected reward while also maximizing the entropy of its policy. By
explicitly including an entropy bonus in the objective, SAC encourages continued exploration and
trains stochastic policies.

Entropy Regularization and Collapse. It is common in deep RL to add an entropy bonus to the
reward or objective to encourage exploration (Williams| [1992; Mnih et al., 2016; |Schulman et al.,
2017b)). Entropy regularization has become standard in policy gradient methods to prevent the policy’s
probability distribution from collapsing to a single action. Without sufficient entropy encouragement,
entropy collapse can occur (Cui et al., |2025; [West and Potts, [2025), wherein the policy becomes
nearly deterministic early in training and gets stuck exploiting suboptimal actions. This issue is
especially pronounced during fine-tuning of pre-trained models: a strong pre-trained policy may
quickly converge with minimal exploration if the entropy coefficient is too low. However, tuning
the entropy coefficient is non-trivial — too high of an entropy bonus can hinder convergence, while



too low fails to prevent collapse. Techniques like automatic entropy tuning in SAC address this by
adjusting the coefficient on-line to maintain a desired entropy level (Haarnoja et al., [2018).

Exploration Strategies and Intrinsic Motivation. Encouraging exploration in RL goes beyond
entropy bonuses. A rich line of research has developed intrinsic motivation techniques, where an
agent receives internal rewards for novel or informative experiences. One approach is curiosity-driven
exploration: Pathak et al. (Pathak et al,2017) introduced an Intrinsic Curiosity Module (ICM) that
rewards an agent for dynamics prediction error — essentially incentivizing the agent to seek states that
are harder to predict. This method enabled agents to efficiently explore sparse-reward environments,
even in the absence of extrinsic rewards. Similarly, Random Network Distillation (RND) (Burda
et al.| [2018) provides an intrinsic reward by measuring an agent’s prediction error on a fixed random
function; the agent thus continually seeks states that produce high prediction error, which correlates
with novel states. Such curiosity-based methods have yielded substantial gains on hard-exploration
games (e.g., Montezuma’s Revenge), where naive exploration fails (Burda et al., 2018)). Another
paradigm is count-based exploration adapted to high-dimensional spaces: pseudo-count methods
use density models to reward rarely visited states (Bellemare et al., 2016), achieving progress on
games with very sparse rewards. In summary, a variety of exploration-enhancement techniques have
been developed, and they can complement entropy regularization: while entropy encourages random
action selection to a degree, intrinsic rewards and other strategies bias the exploration toward novel
or informative states.

Atari and RL Benchmark Results. The Arcade Learning Environment (ALE) (Bellemare et al.,
2013)) — a suite of dozens of Atari 2600 video games — has long served as a standard benchmark for
deep RL algorithms. Value-based methods initiated deep RL’s success on Atari: the Deep Q-Network
(DQN) (Mnih et al., |2016), combining convolutional neural networks with Q-learning, famously
reached human-level performance on many games. Subsequent improvements like Double DQN,
dueling networks, and prioritized replay were combined in the Rainbow agent (Hessel et al., 2017),
further advancing the state of the art in value-based learning on Atari. In parallel, policy gradient and
actor-critic methods have also been validated on Atari. A3C (Mnih et al.,[2016) achieved competitive
results with a much simpler, synchronous training setup. PPO (Schulman et al.l 2017b) has likewise
been extensively applied to Atari; its on-policy nature typically yields slightly lower sample efficiency
than off-policy DQN variants, but PPO’s stability makes it a strong choice for fine-tuning large
neural policies on Atari benchmarks. Indeed, many recent studies use PPO as the backbone for Atari
experiments, sometimes in conjunction with auxiliary losses or pre-training, because it reliably learns
a good policy without divergence issues. The continued challenge in Atari has been hard-exploration
games (like Montezuma’s Revenge, Pitfall, Gravitar), where even advanced agents would score
little to no reward due to sparse feedback. Intrinsic motivation approaches (ICM, RND, etc.) were
introduced to tackle these, and they led to significant, though not complete, improvements (Burda
et al.l [2018)).

3 Method

In PPO (Schulman et al., 2017b), we collect data using my,,, and consider finding 7 that maximizes
Vieo — Vﬂeold . Using the performance difference lemma (Schulman et al., 2017a; [Hamid, 2025), this
can be formulated as the following optimization problem:

mo(ar | s¢) &
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PPO solves this problem by optimizing the following clipped surrogate opjective function:
L{PHVT(0) = By [LEF(0) — i LY T (0)] 3)
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where c; is a coefficient, and L} ¥’ is a squared-error loss (Vp(s;) — V€)%

However, this objective can cause the learned policy to not explore and rapidly collapse on actions
that yield high rewards. Since the data is collected in an on-policy manner and since the policies are



trained to optimize the rewards, this objective can result in overly narrow action distributions, causing
the policy to be stuck in local optima. As such, (Schulman et al.,|2017b) proposed adding an entropy
bonus:

LEMPHVERS () = By [LEYP(0) — e1 LY T (0) + c2S[mo](s1)] @

where c; is a coefficient and S[mp](s:) = H(mg(- | s¢)) is the entropy of the distribution at state
s¢. Intuitively, entropy measures the "width" of a policy’s action distribution; the maximum
entropy distribution over any sample space is the uniform distribution, whereas the minimum
entropy distribution is one that adds all probability mass to only one sample. As such, maximizing
this objective via the entropy bonus S in the objective function, at least in principle, encourages
exploration.

In this paper, we examine the effects of adding this entropy bonus to the PPO objective when fine-
tuning a pretrained policy. To do so, in our experiments, we use a range of entropy coefficients
and analyze rewards, success rates, critic losses, the effects on entropy of the trained policy and KL
divergence of the trained policy from the pretrained policy.

3.1 Theoretical Analysis

In this section, we theoretically analyze how the reinforcement learning fine-tuned policy diverges
from the pre-trained policy. In particular, we will compare this divergence pattern between a learning
algorithm that uses an entropy bonus and one that does not. Throughout this section, we consider a
softmax policy which can be expressed as

mola | s) = Zexp (220) 5)

o €XD (Zsa’)

where s ~ d™ (-) is sampled from the stationary state distribution induced by the policy 7y, a ~
mo(- | 8), and z, is the output logit of action a given input s.

Proposition 1. Let ) (mf | s) = D (m5(- | 8) || mef(- | 8)). Then, for vanilla policy gradient
methods without any entropy bonus,

7T]~C a|s k
Gyt | s) —(mg | s) = CoVyrri(s) <log m + 1,78 (a | s)A™ (s,a)) )

Proof Sketch: Since we are using the softmax policy, we can use a Taylor expansion of ¢(7r§+1 |
s) — (mk | ) centered around (7§ | s). Then, we use that, for the softmax policy,

dlogmh(a | s)
0zk,
and, for vanilla policy gradient methods,

L2k = nmk(a | 5)A™ (s, a).

=1{a=d}—7k(a]s)

Remark 1: This proposition shows that the divergence from the reference policy is positive only
insofar as there is a strong positive covariance between the log probability of an action and the
advantage. In other words, without any entropy bonus, the divergence happens only due to sharpening
the distribution around high reward actions.

Proposition 2. Let (75 | s) = Dxr(75(- | 8) || 7wf(- | 8)). Then, for vanilla policy gradient
methods with an entropy bonus coefficient ,

(| s)

k+1 _ k = . I
P(mg " | s) = ¢(mg | 5) = CoVanrr(s) <0g Trer(a | 8)
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k
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where C'is a constant.



Proof Sketch: The proof is similar to that of Proposition 1, except we must add the contribution of the

entropy bonus to 251t — 2k |

Remark 2: In this case, we see that the divergence can also increase when there is a positive
covariance between the log probability of an action and its contribution to the entropy. In other words,
the divergence comes from an incentive to approach a uniform distribution over all actions. It is clear
that these two goals are not necessarily mutually inclusive and can be quite difficult to balance. This
proposition sheds light on the importance of carefully tuning the entropy coefficient a.

This theoretical analysis confirms the following intuition:

Policy gradient methods incorporating an entropy bonus must balance two conflicting in-
centives: the incentive to sharpen the distribution around actions yielding high advantages,
and the incentive to add equal probability mass to all actions. The ability to balance these
incentives relies heavily on the entropy bonus coefficient o and adapting it throughout the
learning process.

While this confirms the intuition that reinforcement learning fine-tuning sharpens the distribution
around high advantage actions, we ask whether there is any bias from the pre-training that affects this
sharpening. In particular, suppose the pre-trained policy has a large bias towards one action. However,
during RLFT, if the policy discovers that there is an alternative action with larger advantage, which
action does RLFT sharpen the distribution around? To do so, we first look at the optimal policy.
In particular, we consider the original optimization problem that PPO considers (Schulman et al.|
2017bja)) (see equation 1 and equation 2). Next, we consider the theoretical optimal policy satisfying
the (weakened) Lagrangian formulation (Peng et al., 2019) and observe the following:

Proposition 3. Consider a fixed state s and action a. Consider the optimal policy 7* that solves the
optimization problem considered by PPO: maximize expected returns while minimizing divergence
from the pre-trained behavior policy used to collect data, Ty y. Then, if Trer(a' | s) = x-Trep(a ] s).
Then, T satisfies:

m(d" | s) L et (o /Y _ Afe
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Remark 3: Observe that if both actions, a and a’, are equally advantageous, the optimal policy 7*
remains z-times more biased towards a’. In particular, if x is positive i.e. the pre-trained policy is
more biased towards a’ than a and if the true advantage of a and o’ are equal, then the optimal policy
will forego this bias only if the estimated advantage is biased towards a.

This suggests the following takeaway:

Reinforcement learning fine-tuning does not only sharpen the distribution around high
advantage actions but also around actions that our pre-trained policy is biased towards.

4 Experimental Setup

Our experiments follow a four-stage pipeline: (1) training a suboptimal expert policy from scratch,
(2) collecting expert rollouts, (3) pre-training via behavior cloning, and (4) reinforcement learning
fine-tuning with varying entropy coefficients.

Environments. We evaluate on four Atari games—Breakout, Gravitar, Berzerk, and Private
Eye—selected to reflect a range of exploration difficulty. Environments are processed using standard
Atari wrappers: grayscale conversion, downsampling to 84 x 84, frame skip of 4, and a stack of the
last 4 frames.

Policy. We use a CNN architecture similar to Mnih et al.|(2016), with three convolutional layers and
a 512-unit fully connected layer. The actor outputs logits over discrete actions; the critic predicts a
scalar value. Both networks are trained using Adam.

Pretraining. We first train a PPO agent from scratch for 1M steps to obtain an expert policy. This
policy is used to generate 500 episodes of data, which are then used to train a new policy via



behavior cloning using cross-entropy loss. This cloned policy is used as the initialization for all RLFT
experiments.

Fine-Tuning. The cloned policy is fine-tuned using PPO for an additional 1M steps under entropy
coefficients {0.00, 0.05, 0.5, 0.9}. We track reward, success rate, entropy, KL divergence from the
pretrained policy, and critic loss throughout training.

5 Analysis

5.1 Reward and Success Rate Analysis
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Figure 1: Reward curves across four Atari environments. Gravitar and Breakout show steady
improvements; Berzerk and Private Eye display more unstable or plateauing learning behavior.

Our analysis of reward and success rate curves reveals several key insights regarding the role of entropy
regularization in policy fine-tuning. First, introducing an entropy bonus leads to an immediate drop
in rewards and success rates, indicating that the policy begins to "unlearn”" behaviors acquired during
pre-training. This effect is especially pronounced as the entropy coefficient increases: higher entropy
coefficients cause the decline in performance to occur earlier in training, effectively accelerating the
unlearning process.

Moreover, maintaining a large entropy coefficient throughout training often prevents the policy from
regaining its previous performance. Even after one million training steps, policies with a high entropy
bonus frequently fail to recover the rewards and success rates achieved by the pretrained policy, which
calls into question the utility of reinforcement learning from feedback in such settings. In contrast,
in relatively easier environments such as Gravitar and Breakout, the addition of entropy does not
cause significant unlearning. However, we observe that increasing the entropy coefficient slows down
performance improvements, and in some cases, such as Gravitar, larger entropy coefficients provide
little to no additional benefit.

Taken together, these findings suggest the following:

Entropy bonuses in reinforcement learning fine-tuning may undermine the advantages of
pre-training by causing rapid unlearning of behaviors learned from the expert, especially
in more challenging environments with large action spaces. Careful tuning of the entropy
coefficient is thus essential to balance exploration and retention of pretrained behaviors.
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Figure 2: Success rate across four Atari environments. Breakout and Gravitar show stable gains,
while Berzerk and Private Eye reveal more unstable patterns.

5.2 Critic Loss Analysis

5.2.1 Change in Critic Loss through out finetuning
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Figure 3: Critic loss trends across four Atari environments. Stable and decreasing loss generally
indicates effective learning of state values.

We examine the evolution of critic loss across our four environments under varying entropy coeffi-
cients as shown in Figure[3] Critic loss reflects how well the value function approximates the expected



return; therefore, a stable and steadily decreasing critic loss, in general, demonstrates the effective
learning of the state values, whereas highly unstable values indicate insufficient learning.

Our analysis reveals three key findings: First, adding entropy bonus in most environments (such as
Gravitar, Berzerk, and Breakout) improves critic learning. We see that critic loss converged smoothly
to a lower value for the non-zero entropy coefficients, unlike that of the zero entropy coefficient which
sometimes never decreased at all. This suggests that added entropy not only improves exploration,
but also leads to a more stable value estimation. Second, the high values and unstable nature of the
zero entropy coefficient reinforces the hypothesis that entropy collapse reduces exploration, resulting
in insufficient diverse dataset, which may negatively impact the critic’s ability to learn.

Interestingly, Private Eye presents a unique case. Even though the critic loss for all the entropy
coefficients differs initially, they all converge to approximately the same final value. This shows that
despite the initial instability, the value approximator learned a similar solution - probably due to the
deterministic gameplay in the Private Eye environment.

The overall insight from these findings is the following:

Entropy bonuses, aside from promoting exploration, play an essential role in stabilizing critic
learning and learning more accurate critic networks during fine-tuning.

5.2.2  Average Critic Loss vs. Number of Unique Actions Taken from State

We further investigate the relationship between critic loss and the number of unique actions taken
from a state in the Private Eye environment under varying entropy coefficients. Our grouped scatter
plots Figures [AH6] visualize the average critic loss against the diversity of actions from a state, with
bubble size representing the number of states in each group. For entropy coefficient 0.0 (Figure [@),
we observe that states associated with a higher number of unique actions tend to exhibit higher critic
loss, suggesting that the critic struggled to fit the data in regions of the state space where the policy
was less deterministic. However, as entropy increases, this trend weakens. For entropy 0.5 (Figure
[), the relationship remains weakly positive but less pronounced, and for entropy 0.9 (Figure [6), we
even observe a slight inverse correlation, with critic loss decreasing as action diversity increases. This
reversal indicates that high entropy may facilitate better critic learning in more exploratory regions,
mitigating the challenges of fitting high-variance data. However, due to the lack of a consistent
pattern and the complexity of the dynamics involved, we conclude that this relationship warrants
further investigation in future work.
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5.3 Entropy analysis

5.3.1 Change in Entropy through out finetuning
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Figure 7: Entropy trends across four Atari environments. A clear downward trend in entropy,
especially for lower coefficients like 0.0 and 0.05, indicates increasing policy confidence and reduced
randomness as training progresses. Higher entropy coefficients (e.g., 0.5, 0.9) maintain broader
exploration longer.

Our analysis of entropy dynamics across four Atari environments reveals several important trends in
how entropy regularization shapes the evolution of the policy’s action distribution. When no entropy
bonus is applied (co = 0.0), entropy decreases sharply throughout training, indicating that the policy
rapidly collapses onto a narrow set of high-reward actions. This collapse is consistent with standard
PPO behavior and reflects a lack of sustained exploration.

Surprisingly, when any nonzero entropy bonus is applied, we observe the opposite pattern: entropy
initially increases rapidly during early training. This suggests that the bonus encourages the policy to
temporarily diversify its action distribution and explore alternative behaviors. However, this effect
saturates quickly. After the initial rise, entropy levels plateau and remain roughly constant for the
remainder of training. Moreover, across all environments, entropy values converge to a common
ceiling that corresponds to the maximum entropy achievable for the given action space.

This convergence implies that increasing the entropy coefficient beyond a small threshold (e.g., from
0.05 to 0.9) does not produce proportionally more exploration. Instead, larger coefficients merely
accelerate the early rise in entropy, after which all policies stabilize at the same entropy level. This
challenges the assumption that higher entropy bonuses always induce greater diversity or broader
exploration during fine-tuning.

Taken together, these results suggest the following:
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While Entropy bonuses do prevent premature entropy collapse, their long-term effect is
bounded. The policy reaches a regime of maximal entropy early in training and remains
there, regardless of the magnitude of the coefficient. This happens as the policy unlearns
the behaviors learned during pre-training, approximating a uniform distribution and then
spending the rest of the reinforcement learning fine-tuning phase attempting to sharpen the
distribution around high advantage actions. As such, the entropy bonus helps in letting go of
the pre-trained policy’s biases. Unless the entropy bonus is lowered later on, this sharpening
cannot be done causing the RLFT policy to consistently achieve low returns and successes.

J

This raises the question of whether larger entropy coefficients meaningfully increase exploration
depth or simply delay exploitation—an issue we explore further in the next section.

5.

S.

Scaled Height (Normalized to Max)

Scaled Height (Normalized to Max)

4 Action Distribution Evolution Across Entropy Coefficients

4.1 Berzerk
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Figure 8: Action distribution over time for entropy coefficient 0.0.
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Figure 9: Action distribution over time for entropy coefficient 0.9.

5.4.2 Private Eye
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Figure 10: Private Eye action distribution over time for entropy coefficient 0.0.
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Figure 11: Private Eye action distribution over time for entropy coefficient 0.9.

In this section, we examine how the action distribution changes when we use PPO with varying
entropy coefficients. For very low entropy coefficients (0.0 and 0.05), reinforcement learning from
feedback (RLFT) primarily sharpens the action distribution around the same modes as the pretraining
policy. This can be seen in figure [T0b|and in figure [8b] where we see that fine-tuned policy peaks
around the same actions as the pre-trained policy. In these cases, the peaks of the RLFT policy align
closely with those of the original expert, indicating that the overall structure of the action distribution
remains largely unchanged. Interestingly, with very little entropy bonus, reinforcement learning
fine-tuning causes the models’ learned probability distribution to have the same local optima as the
pre-trained policy - RLFT sharpens the distribution but preserves the local optima.

As the entropy coefficient increases, however, the policy increasingly scales up the probability mass
across all actions, moving toward a more uniform distribution. This is especially evident for the
highest entropy coefficients (see figure[TTb]and figure Ob), where the distinction between the modes
becomes less pronounced. In particular, this entropy bonus does not cause the model to discover
a different mode altogether, even with mild entropy coefficients like 0.05. Interestingly, even with
larger entropy coefficients, the policy tends to preserve the local minima and maxima found in the
original distribution, but the probability mass is distributed more broadly, and the peaks are less
sharp. In effect, high entropy regularization widens the distribution while maintaining the overall
directionality imposed by pretraining, rather than fundamentally altering the locations of the modes.

These observations highlight the following:

Entropy regularization during reinforcement learning fine-tuning mainly controls the sharp-
ness and spread of the action distribution by adding large variance around the same modes
as in the pre-training, rather than shifting the policy toward fundamentally different or new
behaviors.

6 Discussion

For future works, we would like to explore adaptive methods for choosing the entropy coefficient.
We would also like to explore other regularization methods than the entropy bonus. In particular,
we would like to consider reward functions that, given k trajectories, rewards fundamentally diverse
attempts that are also scaled by rewards similar to Tang et al.| (2025).

7 Conclusion

Our results indicate that the entropy bonus can be a useful tool in enabling learning better critic
functions via a more stable learning curve. However, the entropy coefficient can be a very difficult
hyperparameter to tune and requires precise adapative methods. Otherwise, it can cause policies to
unlearn behaviors learned during pre-training and can prevent the models from finding high reward
behaviors. More importantly, the entropy bonus is insufficient in enabling the policy to truly explore
and discover new behaviors.
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8 Team Contributions

« Ifdita Hasan Orney: Implemented code for pretraining, PPO, and experiment plots; ran
experiments for Gravitar, and analysis. Contributed to write up.

* Iddah Mlauzi: Wrote code for PPO. Ran pretraining and finetuning for Berzerk and
Private Eye. Ran analysis experiments. Contributed to write up.

* George Kojo Frimpong Birikorang: Ran pretraining and finetuning for Breakout, ran
experiments for analysis. Contributed to write up.

Code Repository: |[github.com/ifdita-hasan/Exploration-Policy
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A Additional Experiments

A.1 Additional plots for Action Distribution Evolution Across Entropy Coefficients

A.1.1 Berzerk
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Figure 12: Action distribution over time for entropy coefficient 0.05.
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Figure 13: Action distribution over time for entropy coefficient 0.5.

A.1.2 Private Eye
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Figure 14: Private Eye action distribution over time for entropy coefficient 0.05.
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Figure 15: Private Eye action distribution over time for entropy coefficient 0.5.

A.1.3 Gravitar
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Figure 16: Gravitar action distribution over time for entropy coefficient 0.0.
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Figure 17: Gravitar action distribution over time for entropy coefficient 0.05.
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Figure 18: Gravitar action distribution over time for entropy coefficient 0.5.
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Figure 19: Gravitar action distribution over time for entropy coefficient 0.9.

A.2 KL Analysis
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Figure 20: KL Divergence from Pretrained Policy across Entropy Coefficients.

We plot the KL divergence between the fine-tuned and pretrained policies to assess how much the
policy shifts during training.

In Berzerk (Figure 20a)), higher entropy coefficients lead to larger and faster deviations, indicating
more exploration. In contrast, Private Eye (Figure 20b) shows smaller, more stable shifts across all
entropy levels—likely due to its deterministic structure.

These trends confirm that entropy affects not only exploration but also how far the policy moves from
its initialization.
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